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in this paper we study uniferm high-order spectral methods to solve
multi-dimensional Euler gas dynamics equations. Uniform high-order
spectral approximations with spectral accuracy in smooth regions of
solutions are constructed by introducing the idea of the essentially non-
oscillatory polynomial {ENO) interpolations into the spectral methods.
Based on the new approximations, we propose nonoscillatory spectral
methods which possess the properties of both upwinding difference
schemes and spectral methods. We present numerical results for
inviscid Burgers' equation, various one-dimensional Euler equations
including the interactions between a shock wave and density distur-
bances, Sod's and Lax’s, and blast wave problems. Finally, we simulate
the interaction between a Mach-3 two-dimensional shock wave and a
rotating vortex.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Recently, high-order numerical methods have attracted
considerable interests for the simulations of flows with
shock waves and different scales, especially for turbulent
flows affected by shock-wave interactions. Those high-order
methods are expected to produce nonoscillatory sharp
shock profiles without too much overall numerical diffusion
and, at the same time, be able to resolve the small scales of
the flow field elsewhere. Recent results with essentially
nonoscillatory (ENO) finite difference methods have made
considerable progress in this direction [9, 17]. Spectral
methods, as high-order global methods, have been very suc-
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cessful in studies of turbulent flows and flow transition
problems when the solutions of the fluid problems are
smooth. For those problems, spectral methods have been
shown to have an accuracy higher than any algebraic order
{so called spectral accuracy) [5]. However it remains to
show that spectral methods will also be successful in
computing flows with shock waves.

In this paper, we continue our previous work [4] in
designing essentially nonoscillatory spectral methods for
computing the weak solutions of the hyperbolic system of
conservation laws

u, +f(u), +g(u), =0 (1.1)

u(x, v, 0y=u4(x, »). (1.2)

Here, as usual, u= (u,, .., #,)7 is a state vector and f(uj,
g(u) are the vector-valued flux functions of s components.
The system is assumed to be hyperbolic in the sense that
for any real vector &=(¢,, &), the matrix £,(6f/0u)+
£,(0g/ou) always has s real eigenvalues and a complete set
of eigenvectors. The solutions to (1.1) usually develop
discontinuities in the form of shock waves and contact
discontinuities.

In applying spectral methods to problems having discon-
tinuous solutions, a key issue is how to deal with the Gibbs
phenomenon caused by the discontinuities of the solutions,
The overall accuracy of spectral methods will be, at most,
first order everywhere in the presence of Gibbs oscillations.
There are various filtering techniques to recover spectral
accuracy in the regions away from the discontinuities
[8, 14]. On the other hand, one-sided filtering can be used
to obtain uniform convergence in the regions close to the
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discontinuities [2]. As another approach to treat the Gibbs
oscillations, in [4] we proposed a nonoscillatory spectral
approximation to discontinuous solutions by adding
piecewise linear functions, such as sawtooth-like functions
and step functions, to the conventional Fourier tri-
gonometric or Chebyshev polynomial spaces. Those addi-
tional functions are used to resolve the discontinuities in the
solutions caused by shock waves and contact discon-
tinuities. The cell-averaged form of (1.1) is used to formulate
the numerical schemes, resulting in Godunov-type shock
capturing algorithms. The usual reconstruction step
between cell averages and point values of the numerical
solutions in such schemes can be done efficiently with fast
Fourier transformations. However, a common problem
with cell-averaged formulation is the costly implementation
of the reconstructions in multi-dimensional problems.

In this paper, we adopt the same philosophy as in [4],
however, a more robust and sophisticated technique will be
introduced. With the new technique, we will be able to
achieve global convergence up to any given mth order
{m=>0) and, meanwhile, retain spectral accuracy in the
regions away from the discontinuities. In order to achieve
these goals, we incorporate the main idea of the ENO poly-
nomial interpolations [9] into our construction of uniform
spectral approximations. We also introduce the idea of
upwind differencing from conservative finite difference
methods into the design of the spectral schemes. The idea of
upwind differencing has proven very successful in capturing
shock wave fronts and producing entropy satisfying solu-
tions. By using local Riemann solvers and flux limiters,
modern shock capturing finite difference schemes, like TVD
schemes [97], MUSCL-type schemes {1973, FCT schemes
[1], and the more recent ENO schemes [9, 17], produce
very satisfactory shock profiles and entropy satisfying solu-
tions. The nonosciliaiory spectral approximations proposed
in this paper will enable us to bring the upwind idea into the
framework of spectral methods. Meanwhile, the spectral
schemes will be based directly on the conservation laws
{1.1), not its cell-averaged form. Thus, generalization to the
multi-dimensional cases will be straightforward.

For the system of conservation laws, in order to achieve
sharp shock profile without spurious oscillations, numerical
flux operators for the scalar equations are usuaily applied to
the locally defined characteristic variables. Because of this
complication, it has been realized that the cost of upwind
schemes is much greater than that of the centered difference
schemes. Several attempts have been made to eliminate this
shortcoming by combining center difference schemes and
upwind schemes. In [13], a mixed method of center dif-
[erence schemes and ENO schemes was studied and, in (6],
the authors suggested a type of nonlinear filtering technique
to modify the results of the Lax-Wendroff scheme at each
time step to produce nonoscillatory TVD solutions. The
result in this paper wiil provide another example of blending
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the nice properties of both upwind scheme and center
difference schemes (in this case, spectral schemes).

This paper is organized as follows: in Section 2, we first
briefly review the method proposed in [4], then present the
new method of constructing uniform convergent, up to
any given mth order {m > 0), spectral approximations to
discontinuous functions. In Section 3, we study the
nonoscillatory spectral methods for scalar conservation
laws. Extensions to the system of conservation laws and
multi-dimensional problems will be discussed in Section 4.
In Section 5, we present numerical experiments for the new
methods. First, the uniform convergence and the spectral
accuracy of the proposed spectral approximations are
iested on discontinuous functions. Then we study the global
accuracy of the spectral schemes on a scalar inviscid
Burgers” equation and one-dimensional Euler equations
which mode! the interaction of a pure shock wave with
density waves. Also we apply the scheme to the standard
Sod’s and Lax’s test problems [16] in order to check the
convergence of the spectral schemes with respect to the
correct entropy solutions. High-order numerical results will
also be presented for solving the interaction between two
blast waves [207]. Finally, we apply the spectral schemes to
simulate the interactions between a Mach-3 two-dimen-
sional shock wave and rotating vortices.

2. UNIFORM HIGH-ORDER SPECTRAL
APPROXIMATIONS

The conventional Fourier spectral space has basis func-
tions {e**} ;) < ». The Fourier expansions for discontinuous
functions converge very slowly. For instance, consider a
sawtooth-like function

—-X for x<x,,

F(x,xs,A)=A{ (2.1)

2n—x for x>x,,

where x, is the location of the discontinuity and
A= (F(x})—F(x;))2n=[F],, is the jump of F(x, x,, 4)

ACTOSS X .
The partial sum of the Fourier expansion of F{x, x,, 4) is

Fu(x,x, A)= T Jilx, A)e™s (2.2)
k1= N
where
~ 1 ps.4 .
e )= Fix, x,, 4) e ax
n a
e~Hsfk)  for lkiz1
=4 ’ 23
{(n-xs) for k=0, (23)
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From (2.3) we see that the Fourier coefficients 7, (x,, A)
only decay like O(1/k} as k—oo. As a result, the
convergence of (2.2} will be only first order, and moreover,
the Gibbs oscillations near x, will be in the order of O(1).
In order to get rid of the Gibbs oscillations, in [4] we
proposed a technique to construct essentially nonosciilatory
spectral approximations, which we review below.

Let u(x) be a piecewise C = periodic function with a jump
discontinuity at x, with jump [u], and, if u,(x) is its finite

Fourier expansion, then the nonoscillatory spectral
approximation is defined by
* ikx A' — kv tkx
ufx)= Y ae*+ ¥ e e (2.4)
i

e k| >N

where y is an approximation of x, and 4’ is an approxima-
tion of [#], ., and

2n .
ak=w—J u(x) e ™% dx.
0

2

Since the second sum in (2.4) is actually Flx, y, A")—
Fy{(x, y, A"}, we have

*

wh(x)= Y [a—fily, A)] " + Flx, y, 4').

kls N

(2.5)

Therelore u¥%(x) defines an approximation in the spectral
space {€““},, <~ augmented by sawtooth-like functions
Flx, y, A').

The approximation defined in {2.5) yields nonoscillatory
numerical results for discontinuous functions, and spectral
schemes using this approximation have given high-order
accuracy for one-dimensional Euler gas dynamics equations
[2,3]. In order for (2.5) to be nonoscillatory, the
approximations for the location of the shock and the
magnitude of the shock should be reasonably accurate.
Second order accuracy in the location and first order in the
magnitude are needed to ensure the uniform nonoscillatory
convergence.

In what follows, we present a different method which will
be uniformly convergent up to any given order m > () and,
at the same time, retain the spectral accuracy in the smooth
regions away {rom the discontinuities. Furthermore, the
requirement of accuracy in shock Jocations will be much
relaxed and computationally robust. Before we discuss the
new approximation method we introduce two techniques to
be used in our construction. The first one is the essentially
non-oscillatory (ENQO) polynomial interpolation, and the
second is the filtering technique for Fourier approximations.

ENOQ Polynomial Interpolation

We will follow the notation used in [9]. Let u{x) be a
function defined on /=0, 2r] and {x,} ¥ , be the uniform

581/104/2-10
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mesh on I, x;=ih, h=2n/N. For simplicity of illustration,
we assume that #(x) has only one discontinuity at x, el
Now given u(x,), 0<i< N, define a piecewise mth order
polynomial interpolant Q,.{x; u) for u(x) at mesh points x,,
0<gi<Nas

for

Qx5 u)=ulx;) D<igN, (2.6)

and

Qm(x;“)=51m,j+1/2(x§ u) for (2.7)

XNEXKX,,

where ¢, ;, 1,2(x; u) is a polynomial of degree m defined
below. ‘

Polynomial g, ,(x; u) interpolates u(x) at (m+1})
successive points x;, i,(j)1<i<i,(j)+m The stencil of
these (m + 1) mesh points will be chosen according to the
smoothness of the data u{x;) around x,. A recursive
algorithm to define i,,(j) starts by defining

J if x;<x,,

()= 28
his) {j+l otherwise, (23)

‘1€, ¢4 ;412(x) will be the first degree polynomial which

interpolates u(x} at x;, x;, | or x;,, x,,,. If we assume

Gk, j112{x) is the kth degree polynomial which interpolates

u(x) at

Xityr = Xi(f) + ko (2.9)
then we need one additional mesh point in order to define
i +1,+ 1,2(x). That point may be the nearest one to the left
of stencil of (2.9) (i.e., x,,(;,_; } Or the nearest one to the right
of the stencil of (2.9) (i.e., X,(;34x+1) The choice will be
based on the absolute values of the corresponding (% + 1 )th
order divided differences, namely,

)= o |ulxgy 1 e X+ £l

< |u[ Xy o Xy v 11l
otherwise.

i) =
() |
{2.10)

The piecewise polynomial Q,,(x; v} defined in (2.6), (2.7)
will give uniform nonoscillatory approximations to u(x) up
to the discontinuities. In fact it can be shown that

d* d*
T Q..(x; H)=Wu(x)+0(hm+'_k)

for 0gk<sm (2.11)
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Filtering Techniques for Fourier Approximations

When a function u(x) is discontinuous, its Fourier
approximation #,{x) will be at most first order everywhere
[7]. However, there are several ways to recover the loss of
the spectral accuracy in the smooth regions of the function
u(x) [8, 14]. The most common way is to multiply the
Fourier coefficients of u(x) by a decreasing scalar factor o,.
lo,] =0 as |k| = N. Then the resulting series (the filtered
approximation} will be denoted by u$,(x),

Y o.ae™

k<N

ui(x)= (2.12)

It was proven in [ 18] that, if o, is derived from a scalar
function ¢(¢), 0 <t <t and o, = a(Jk|/N), |k| €N, and ¢(¢)
satisfies the following conditions:

a(0)

a(1)
a¥(0)= (1)

, (2.13)

l£k<K

0
a

then u%,(x) will converge to u(x} in the smooth regions of
u(x)in the order of O(1/N**1}. In the actual computations,
o, 1s chosen to decay exponentially in terms of the frequency
number,

— kg
WV for

gp=¢ k| <N, (2.14)
where the constant « is chosen so that ¢, is the machine

zero and 2¢ is called the order of the exponential filtering.

Uniform Spectral Approximations

We now present our new uniform high order non-
oscillatory spectral approximations to discontinuous
functions. Again, for simplicity, we assume u(x) is a
periodic piecewise C* function on [0, 2n] with only one
discontinuity at x,. Also we assume that the discontinuity
has been detected within an interval [x, x!].

Let us denote all the mesh points inside the interval
[x!, x'] as x,, ..., x,. We then define a piecewise mth order
polynomial o(x) which interpolates function #{x) at mesh
points x,, i, <i<i,,

Gmir12(x) i xelx,x;.4]
n [x4, x7] for some j,
i i " 215
p(x) Pix) if xel0,x'1, ( }
P.(x) if xel[x!,2n],

where g, ;. 1,2(x) was defined in (2.8)-(2.10) and P,(x) and
P(x) are both m’'th order polynomials on the interval
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[0, x!] and [x7, 2n] respectively, m’=2m + 1, and satisfy
the following conditions,

P(k)( ) '?fff)u—uz(’f")

for 0gsksm (2.16)

PR (x0)= ‘?m o+ 1205
and

PIx]—2m)=q}) | 1p(x7),

for O0ghksm (217)

P+ 2m) =g, (X)),

Conditions (2.16) and (2.17) ensure that @(x) will be at
least globally C™ continuous. There are exact 2m+2=
m’+1 constraints on the m’th polynomials P,(x) and
P (x), respectively. Therefore they are uniguely defined. By
(2.11), the function @(x) will have the following property:

o(x;)=u(x;) for i,<i<i,, (2.18)
o(x)—ulx)=0Hr"*"y  for xe[x!,x'] (2.19)

Next we consider the difference between u(x) and ¢(x),
v(x) = u(x)— p{x). v(x) will be a C"” function everywhere in
[0, 2n] except at x, where [v(x)],, = O(K"*'). Moreover,

u(x;y=0, i;<i<i,. Therefore, the filtered Fourier inter-
polant I3, v(x) will converge to v(x) rapidly,
(W21 —1 )
valx)=15v(x)= oy Bie’™,
k= —N/2
1 X ]
fe=y L (lx)—plx))e ™
=0
_ 1 Z ( P — ikx;
—Ni<r',-{ )=Fi(x))e
+ I ( kxkx,
S (ulx)=P(x)) e

and g, is the filter in (2.14).
Finally we define the umform spectral approximation
Pu(x) of u{x) by

Pu(x)= @(x) + vi{x), for xe[0,2x]. (2.20)

Then the derivatives ol u{x) will be approximated by those
of Pu(x), ie

dk d.‘r
ok u(x) dx P

. Pu(x) for k>0.

(2.21)
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To see the accuracy of (2.20) to wu(x), let
p(x)e CF(xL, x7) be a mollifier function with maximum
value not greater than one such that

plx)=1 for x near x_, (2.22)
and
1— if 2 £ x7],
p*(x) = (1—p{x))v{x) il xe !:xs x7] (223)
t{x) otherwise.
One can easily see that
v*(x;)=v(x;) for 0<i<N, (2.24)
and hence
Iyo*(x) = Iyv(x). (2.25)
As v*(x)e C"(0, 2r) and is periodic, by standard
estimate it can be shown [2] that
e o™,
le*(x)— e (x)”LzSCW, (2.26)
where c is a constant independent of N.
On the other hand,
[o*(x) —w(x)],
= \/rjs p2(x) v*(x) dx
5
< L{ v3(x) dx
s\/ﬁ (u(x) — o(x))* dx, (227)
by (2.19) we have
lo*(x) ~o(x)lf,, = O(H™* ). (2.28)

It follows from (2.26) and (2.28) that

o) = IR o(x) o, = Nlo(x) - IR0 (X)) .,
< [lofx) ~v*(x)| o,
+ o*(x) = 150%(x)],

=0+, (2.29)
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Thus
| Pue(x} — ulx)
= [[[Lo(x) + I5e(x)] — [o(x) + v(x) ]l
= |lv(x) = I, 0(x)l ., = O(h™* "), - (2.30)

which establishes the uniform (s + 1)th order convergence
of the approximation Pu of u in the L, norm. Error
estimates in a higher order Sobolev norm can be derived
similarly.

The spectral convergence of 2u(x) to u(x) in the regions
outside [x!, x7] follows from the spectral convergence of
v%(x) to v(x) in the smooth regions of v(x).

3. UNIFORM HIGH-ORDER SPECTRAL
METHODS

In this section we study umiform high-order spectral
methods for conservations laws (1.1). First, we will consider
the scalar one-dimensional conservation laws. Extensions to
the system of conservation laws and to multi-dimensional
problems will be discussed in Section 4.

We will derive the spectral schemes using the method of
lines. The time derivative and spatial derivatives will be dis-
cretized separately. For simplicity’s sake, we use the Euler-
forward-difference method for the time derivative and the
numerical scheme will be written in the conservative form,

ll;+]=u;—)»(j}+1/2_];‘—1/2_]a (3'1)

where u] ~ulx;, t,}, x;=jdx, t,=nAdt, and 4x and At
arc the spatial mesh size and the time step, respectively;

A= At/Ax,};- + 172 are the numerical fluxes.
It is observed that if there is a function A(x) such that

=== iy (32)
* T Ax ¥ (4372 ’ ’
then
fx(x}-]=h(xj+1j2)_h(x‘j_m). (3.3)

Ax

This suggests that the numerical fluxes f; +152 Should
approximate A(x;, ,,) as 4x = 0.

We construct A{x} in the same manner as in [17] via its
primitive function H(x) modular a linear function,

Hx=[ k@ -ed (3.4)
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where ¢ is a constant chosen so that H(x) will be a periodic
function,

2n —(Axf2}
e=|

N—1
WEydi=dx ¥ f, (3.5)
=0

—Ax/f2 j

Assuming that (3.2) holds, then

H(x, 1) = [/ (h(&)— ) de
=3 [ ho e e+ ax

k=0 k=12

J
=dx Y flu(x))—e(j+1)dx

k=0

for 0/ <N (3.6)

We then form the unilorm spectral approximation
operator ZH to H(x),

PH =[x} + viix), (3.7}

where ¢@(x) is the piecewise mth polynomial defined in
(2.15) and v%,(x) is the filtered Fourier interpolant of data
H(x; o 10) = 0% 02), 05 j< N As before, it is assumed
that the shock discontinuity or contact discontinuity x, (for
simpler illustrations, only one such discontinuity is assumed
to exist) has been detected in an interval [x!, x], i.e.,

xse['x.‘s" x;] (38)

!fXE {xjs i+ l] M [xis x:] fOI' Some.j’ (P(x] = qu+ l,ﬂ‘Z('x)'
Gum, ;4 172(x) 18 an mth order polynomial and

Gom, j+ lfz(qu. yz)

=H(x;y1p)  for i,()<i<iu(/)+m (39)
The stencil i, (7}, ... i,,,(f)+ m is defined recursively as in
(2.8)-(2.10}, however, the first point of the stencil i,{j) is

chosen according to the local Roe-speed a, . 1,5,

f(uj+1)_f(uj)

, = 3.10
Qa2 0, —u, s { )
ie.,
o FA if a;,,,20,
= 311
i) {j+1, if 4., <0. (3.11)

We then have the following spectral algorithm:
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ALGORITHM 1 (Spectrai ENO-Roe).

« Step 1, define Hix; ), 0<j< N by (3.6) and their
uniform spectral approximation £ H(x) by (3.7);

« Step 2, let
~ d
Sren = dx PH(x; 1p)+c

d
=d_x(P(X_Hx;z)“'av;(xjwfz)+C= (3.12)

where constant ¢ is defined in (3.5).

Remarks. 1. (Operation counts of the Algorithm.) The
traditional piain spectral methods need order of O({N log )
operations in computing derivatives f{i;}, | <j< N. The
costs of Algorithm I consist of two parts: (1) the computa-
tions of the primitive function H(x, /), operation counts
N +1; (2) the computations of derivatives of ¢(x;, ) and
vn(x; 4 1,2). Inside the discontinuity interval, ¢(x) is defined
by mrth order ENO interpolations, for k cells, the operation
counts equal to 3{m» (m+1)/2+k » m) (computation of
divided difference tables) + 2k(m — 1) (stencil selection) +
2k % m (computation of Newton nested form). As the num-
ber of cells inside the discontinuity interval is usuaily small,
about 6-8 cells in ail our computations for each discon-
tinuity, so the costs for the ENO interpolation can be
ignored. Outside the discontinuity interval, computation of
®©.(x;.1,2) can be evaluated anaiyticaily in (m+1)* N
operations where m is the order of polynomial ¢(x). The
evaluation of (d/dx)v}ix;,,5), 0<j<N can be done
efficiently via the fast Fourier transformations with the total
number of operations of order O(N log N). Most of the
computations except for the ENQ part can be well
vectorized in current vector machines. The advantage of
Algorithm [ will be more evident in the case of systems of
conservation laws, the characteristic decompositions
needed for upwind ENQ schemes, thus the ENO interpola-
tions for the characteristic components, only have to
be done for those few mesh points inside discontinuity
intervals;

2. The formal spatial accuracy of Algorithm I will be
spectrally accurate in the smooth regions of the solution and
uniformly m-order elsewhere;

3. {Entropy Correction.} The fluxes Z"H/z defined in
(3.12) are based on the Roe flux which admits “expansion
shocks.” In [11], a simple way of entropy correciion was
suggested for the Roe scheme. For our Algorithm I, we
adopt the following entropy corrections. In the cells
that contain sonic points, ie., f'{u) changes signs for
u;su<u;,,, we make entropy corrections using the local
Lax—Friedrichs fluxes as proposed in [17]. Noting that

(P(xj+\[2):H(xj+§}2)s thus (P[xj—ilz’xj+li21=f(uj)_c
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for x;e[x!, x7), therelore we can define a local Lax—
Friedrichs flux as m [17]. The resulting fluxes will replace
(d/dx) @(x;, ) in Eq. (3.12). The computation of a local
Lax—Friedrichs flux costs twice as that of computing
an ENO-Roe flux in (3.12), however, it will ensure an
entropy-satisfying solution and maintain the formal
accuracy of the whole scheme.

4. EULER EQUATIONS OF GAS DYNAMICS

In this section we extend the scalar Algorithm T from the
previous section to the system of Euler equations for gas
dynamics for polytropic gas. With all variables in boldface
denoting vectors, we have the following Euler equations:

u, + f{u), =0, (4.1)
u={(p, m, E)7, (4.2)
f(uj=qu+ (0, P, gP)7, (4.3)
P=(y—1)E—;pq°). (4.4)

Here p, ¢, P, and E are the density, velocity, pressure, and
total energy, respectively, m = pg is the momentum, and
v= 1.4 is the ratio of specific heats of a polytropic gas.
The eigenvalues of the Jacobian matrix A(u)=df/du are
).l(u):q—c, Au)=gq, ;'»3(ll):(]+t’, (4.5)
where ¢ = {yP/p)"* is the sound speed.
The corresponding right-eigenvectors are

[ 1
rfu)=|{ g—c |, = q |
hac 2 (4.6)
1
= g+c |,
h+qc

where
h=(E+ P)p=c*/ly—1)+34%

is the total enthalpy.
The corresponding left eigenvectors {1,(u)} which are
bi-orthonormal to {r (u)} in (4.6) are
ll(u) = %(b2 +Q/C? _bl q_ I/C, bl);
L{u)=(1-b;,b,9, — b)),
li{u)= %(bz_ gie, —bg+lje, b)),

{4.7)
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where
by={(y— 1)/, (4.8)
h,= %qzbl. (4.9}

As in the case of scalar conservation laws, we first define
a vector counterpart H{x;, ), 0<j<N of (3.6). The
scalar quantities f(u(x,)}in (3.6) are replaced by the vectors
f(u(x,)). We then generalize the construction of the uniform
spectral approximation operator #H to vector-valued
functions in the following way. As before, the assumption
about the shock location (3.8) still holds here. We have
the uniform spectral approximation ‘

PH(x)=®{x}+ v (x), (4.10)

where the components of the vector-valued function @(x)
will be piecewise mth polynomials and v%(x) will be the
filtered Fourier interpolant of vector quantities H(x, , ,,,) —
Dx;,12) 0K /<N

®(x) will be defined separately according to whether x is
inside or outside the interval [x], x7}. Forxe [x,, x,,,1n
[x!, x7] for some j, first tet g%, ,»(x) be the ENO polyno-
mial interpolant of the characteristic variables H*)(x,, | ),
j—m < i< j+m Here as usual the characteristic variables
H%¥(x, . ,,») are the projections of H(x,, ) on the locally
defined characteristic fields. In this paper, we define the
local characteristic fields with respect to the Roe-averaged
state u;, ,;, between the statesu;, u;, (, ie,

H{k](xj+],12):lk(ﬁj+l,!2) H(x,, ) (4.11)

forj—m<i<j+m, 1 £k<3. For the definition of @, 5,
we refer to [15].

So, we have

‘15,’:,),-.,. 1/2(xj+ 1,’2) = H{k](xj—o— 1,'2)

for i (j)<i<i,(jY+m (4.12)
In the recursive process of choosing the stencil i,,{;), the
first point #,(/} is determined according to the sign of the

local eigenvalue, specifically

. J
Il(j)={j+1

lf Ak(l:lj+1/2)20’ (4.13)
if )"k (uj‘+ 1/2) <0.

Then we define the vector-valued function @®(x) as

3
D(x)= Z qi}i{u‘+l/2(x)rk(ﬁj+1/2)

k=1

for xelx,x,,,] (4.14)
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On the other hand, when x is outside of the interval
[x!, x7], we define ®(x) in the same way as in (2.16) and
(2.17). Therefore, in those regions the components of ®(x)
will be m' = (2m+ 1)th order polynomials. Globally, the
components of ®(x) will be C™ function for x e [0, 2z} and

D(x; 1) =H(x; 10

if xipelxl,x] (415)

Now we present out algorithm for (4.1):

ArcoriTM I (Spectral ENO-Roe).

» Step 1, define vector quantities H(x;, »), 0< /< N by
(3.6) and their uniform spectral approximation 2H(x) by
(4.10);

= Step 2, let

N d
fj+ /2= E -@H(x,w 1/2) +c

d
Z—_(D(x_,H—l_.‘2)+_v?v(xj+1j2)+ca (4.16)

dx dx
where ¢ is defined as in (3.5) with f; replaced by f;.

Remarks. 1. All of the remarks following Algorithm I
of the previous section apply to Algorithm 11, However, the
entropy correction will be done only on the genuine non-
linear fields. The total number of operations in the com-
putations of all fj+ 12: 0< j< N will be of order O(N log N).
Moreover, the characteristic decompositions are only
needed for those x,,,, in [x{, x]] where a shock discon-
tinuity or contact discontinuity has been detected;

2. (Generalization to Multi-dimensional cases}. For the
system of conservation laws in two dimensions (1.1), we
apply Algorithm II to f(u} and g(u) separately. Charac-

C.0 -

a
—a.o _///,—\/f\\\w//a\f//ﬁ\\\xf\\/\\\Vfﬁ
—6.0 -
]
X
¥
>
—5.0 -
‘12.0-:-
{
—13-9 ¥ T T T T mh
Q.G 1.3 .5 3.8 s.0o & .3
X—Axis
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teristic decompositions wiil be done on their corresponding
characteristic fields when needed. The same idea can be
applied to higher dimensional cases.

5. NUMERICAL RESULTS

In this section, we will carry out several numerical
experiments with Algorithms I and II. In implementing
these algorithms, we have to choose the order of ENO inter-
polations in (3.7) or (4.10) and the interval [x/, x7] as
defined in (3.8), which is detected to contain a shock or
contact discontinuity. In most of the tests, we choose third-
order ENO interpolation, ie., m = 3, unless it is mentioned
otherwise. The interval [x!, x7] is usually chosen to contain
6-8 mesh points around a discontinuity. The numerical
results show insensitivity to the size of [x!, x7] as long as it
contains all transition points in the numerical shock. To
detect the shock we have used the basic check on the
gradients of the numerical data, Define

ty=max({u(j) —u(j— 1), [u(j+ 1) —u(f)]). (5.1)
if 1;>max(3.0t, ,,3.0¢,,,a), where « is chosen dynami-
cally according to the structure of the shock wave, then we
decide that the interval [x;_,, x;,,] contains a discon-
tinuity, Because of the global high order of the schemes, a
falsely detected shock location in a smooth region of the
solution will not destroy the whole accuracy of the scheme
{though spectral accuracy will not be retained at those
falsely detected discontinuities).

To retain the spectral accuracy in the smooth region of
the solutions, we apply high order exponential cut-off filters
in {2.14). It is our experience that a very weak filter (ie.,
high order) will suffice to get high accuracy in the smooth
region.

b

—iz .0

—15-90 T T T T 1
o.o 1.3 Z.5 3.8 s.0 6.3
X-Axis

FIG. L. {a) Uniform speciral approximations to discontinaous funcion, errors in function values on the logarithm scale, N =232, 64, 128, and 256;
{b) error in first derivative values on the logarithm scale, N = 32, 64, 128, and 256.
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¥-Axig

—1.0 -7 T T T T 1
2.8 5.0 s.3
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3.0 —

Y-Axis

T
2.8 5.0 & .3
X-Axis

FIG. 2. Linear advection of discontinuous solutions with subcell resolutions, ¥ = 200; (a) time =2z and (b) time t = 4x.

Time Discretization for Chebyshev Methods

The time derivative in (4.1) is discretized with the
Runge-Kutta method. We have used the third order
Runge-Kutta method proposed in [17] which yields TVD
(total variation vanishing) results if the spatial discretiza-
tion is TVD.

For periodic problems, the spatial derivative is
approximated by Fourier trigonometric polynomials.
When the solution is nonperiodic, Chebyshev polynomials
are used instead. A common difficulty, however, with
Chebyshev methods is the stringent time-step restriction. In
general, the time step At has to be in the order of O(1/N?),
where N is the order of the Chebyshev polynomials. As in
most orthogonal polynomial based collocation method, the
collocation points are clustered near the solution bound-
aries, For the test problems in this paper, this dense dis-
tribution of mesh points near boundaries is not necessary.
Recently in [12], a novel mesh transformation is proposed
to relax the restriction of the Chebyshev methods on time
steps. If x denotes the physical coordinate and ¢ the

TABLE}

Globat L, Error and L, Error in the Smooth Region for the
Burgers’ Equations at Time ¢ = 2; the Smooth Region Is Defined to
be 0.8 Away from the Shock Location

N Global Order Smooth region Order
32
1.49(—4) LI7(—4)
64 2.5 43
2.70(—5) 5.86(—6)
128 19 6.5
370(-6) 6.54(—8)
256 37 10.0
295(—7) 6.36(—11})

computational coordinate, the following transformation is
considered in [12]: '

sin~!ax

§=—-'j_ﬁ
o

x| <1, [£ €L
sin

(5.2)

If £;=cosi(n/N), 0<i< N is the Chebyshev mesh in the
E-space, then x,=(l/2) sin(sin~'2{;) will be the corre-
sponding mesh in the x-space. Because of the stretching
nature of the transformation (5.2), mesh points x; will
be more uniformly distributed in the physical x-space.
A Chebyshev polynomial in the transformed &-space will be
used to approximate the derivative with respect to £, and
the derivative with respect to x wiil be computed as follows:

« 4k a4
dx "~ sin~! g cos(sin " af) d&’ (53)

In pur computations, we have observed an improvement

a1 =2
1
[=] 2 —
Q.5 —
2
x
¥
>
o.2 —
_a.z -
-o.s5 - T T T T 1
0.0 .3 2.5 3.8 5.0 5.3
X-Axis
FIG. 3. Solutions to the inviscid Burgers’ equation with Algorithm I,

N =32, r=2: Numerical solutions (plus}), exact solutions (solid lines).
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a.c — 1.0 —
a b

—2.a — —1 .0 -

—4 .8 — /\/ —3-0‘{
& ®
< F
> >

-7 .z - —5.0

—9.6 — -~ .0 —

o \'\'\/\\ L \/—\

o.ao 1.3‘ ]2 5‘ 3.5‘ 5.o| 5.3\ o.0 1."_’3‘ ;v;.s\ 3.3‘ 5.3l G.B‘
X-Axis X—Axis

FIG. 4. Errors to the inviscid burgers’ equations for N =32, 64, 128, and 256 at time ¢ =2: (a)} the spectral Algorithm I and (b) the third-order ENO

finite difference methods.

of one magnitude in the time step with « = 0.999; at the same
time, the resolution of the numerical method is also
enhanced in the intetior of the physical domain, We refer the
reader to [ 127 for more details about the evaluation of the
transformation. |

Uniform Spectral Approximation for Discontinuous Func-

tions. 'We consider the following piecewise C™ function:
(. 2
—sin{2(x+0.71))+1 —a<x< —grz,
sinlx 2 2
glx)=e 1 sin? x |x| €=,
5
2 I sin 3x 2 er<
v fn<x<
\ T 6 5 TSR

(5.4)

g(x} is extended periodically outside of [ — =, ], thus g{x}
has three discontinuities in the interval [0, 2n]. The profile

of g(x) is plotted as the solid line in Fig. 2. Given the mesh
value g(x,), x, = 2wi/N,0 < i< N, we use (2.20) and (2.21) to
approximate g(x,, ;) and (d/dx) g(x;), 0<j< N, respec-
tively. In Figs. la and 1b, we plot the errors in function
vatues and first derivative values respectively on a logarithm
scale for different N’s, ie.,, N =32, 64, 128, 256. In all of the
runs, a 16th order of exponential cut-off filter is used and
the third order of ENO interpolation in (2.15) is used. We
clearly see the uniform convergence and spectral accuracy in
the smooth parts of the function g{x).

Linear Advection of Discontinuous Solution with Subcell
Resplution. In order to reduce the smearing in contact
discontinuities by shock capturing schemes, Harten [10]
suggested a subcell resolution technique to treat one-dimen-
sional contact discontinuities in the context of the cell-
averaged ENO finite difference schemes. Later on, this idea
was extended to the point-value version of the ENO finite
difference scheme in [17]. We test the subcell resolution by
our spectral methods.

4 =3 4 S
3.a .6
2.7 - 2.7 =
2 2
F < :
> >
1 8 — a 8 —
o [\/\ oo E\/\
c-0 L T T T T 1 °e-¢ 71— — 1T  —_ T 71—
—1 .0 —0 .6 -0 .2 c.2 0.6 1.0 -1 .0 —0 .86 -0 2 c.=z .6 i1-0
X—Axis H-Axis
FIG. 5. Interactions between one-dimensional shock wave and density waves with N =200 at time ¢ = 0.36: (a) the spectral Algorithm [ and (b) the

second-order MUSCL schemes,
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Consider the initial boundary value problem of the
following linear hyperbolic equation,

U, =u,,

u(x, 0) = g(x), xe [0, 2n], (5.5)

(0, )=u(2m, 1)
where g(x) is defined in (5.4).
In Figs. 2a and 2b, we plot the numerical solution for

N =200 after one and two cycles, ie., t =2, t = 4n. In both
runs, we have used the 10 th order exponential cut-off filters.

Inviscid Burgers’ Equation. In this classic example of
shock wave computation, we consider the initial value
problem with sine wave initial conditions,

u2
) —p,
“'*(2)x
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The solution to (5.6) develops a shock discontinuity at
time ¢ =1/f. When o # 0, the solution consists of a moving
shock wave after 1=1/8. As the exact solution for this
problem can be obtained by iterative methods, we use this
example to test the global accuracy of the scalar Algorithm
I with m =3 (ie., the third order of ENO interpolation is
used in (3.7)). In Table I, we list the global L, error of the
numerical solutions and the L, error in the smooth region
of the solution at time =2 and N =32, 64, 128, and 256. In
computing the global L, error, we exclude the occasional
one lransition point across the shock, and for the L, error
in smooth region, we exclude a neighborhood with radius
0.8 centered at the shock location. The third column of
Table | shows the global third-order accuracy in L, norm of
Algorithm I, and the fifth column shows the increasing
order of accuracy in the smooth region. In all of the runs,
the time step has been chosen such that further decreasing
of the time step does not improve the final accuracy. There-

u{x,0)=a+ fsin x xe[0,2r], (5.6) fore, the dominant errors come from the spatial discretiza-
_ tion. In Fig. 3, solutions at time r = 2 and & = 32 are plotted
u(0, 1Y =u(2r, 1), : . s .
(plus) against the exact solution (solid lines). In Fig. 4a, the
where «=0.3, §=0.7. errors for N =32, 64, 128, and 256 at time ¢ =2 are plotted
) q_._‘%\ N 3
a
Y o & ‘g [+ & —-
; 5
> 7ol
) Rcammmemr— E—ccc—
e.o 4 T T T T 1
e.0 T T T T - —1.0 -o.6 —o.z o.z o.6 1.0
-1 .0 —0. 5 -0 .2 O~.2 o. 5 1.0 X—Axis
X—Axis
¢ 3
é
>
-1 .0 -0 =3 -_0 .2 X_A,:Z:S.Z Oo. & .

FIG. 6. Solutions of Sod’s problem with ¥ = 150 at time ¢ = 0.4: (a) density, (b} velocity, and (c) pressure.
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in logarithm scale. For a comparison, we plot the errors
with the same parameters for the third-order ENO finite
difference scheme in Fig. 4b.

One-Dimensional Euler Gas Dynamics Equations. We
solve the systern of equations (4.1) with different initial data.

(1)

We consider the following imitial condition for (4.1),

Interaction of a shock wave and density waves:

p,= 3857143, q,=2.629367, P,=10.333333
—1gx<—-08,
p,=14esinSnx,q,=0, P, =1
—08<x<1,
where ¢ =02,
In Algorithm 11, we choose the third-order ENO inter-
polation and the 16th order exponential cut-off filters. In

Fig. 5a, we display the density profile for N = 200 at t = 0.36,
the solid lines are the solutions obtained by the third order

CAl AND SHU

ENO finite difference methods with 800 points. For a
comparison, we plot the solution obtained with the second
order MUSCL schemes with N = 200 in Fig, 5b.

(2)

We now consider the standard Riemann problem of (4.1)
with the following initial data [16];

Sod’s problem and Lax’ problem:

{a) Sod’s problem
(Ph?fst):(],O,l) —léxﬁo,
{p.. q,, P,)=1(0.125,0,0.10) 0<x<t;
(b} Lax’s problem:
(0,4, P;)=1(0445,0698,3.528) —1<x<0,
(0., 4.. P,)=(05,0,0571) 0<x<l.

For Lax’s problem, the subcell resolution has been
applied on the lincar degencrated field near contact discon-
tinuities. In both of the problems, we use the third-order

<
1.2 4 dJ 1.8 —
a b
2
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0.7 - 1 1T -
@ 8
E3 X
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> ¥ '
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0.5 - >o v - 3
e, -
o.2 - ©.a —
>
Q-0 717 7 F T — ©-0 T T T T u
~-1_.0 —-0.6 —-o.z oLz o.s 1.0 —1.0 —-o0.s —-o.z [ c.6 1.0
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a Qo —
[o]
3.2 o
2. a oo 5]
4
X
T
>
1 e —
a.a -
5
| ettt
o-0 T T T )
-1 .0 -0 .6 -0 .= .z Q.6 1.0
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FIG. 7. Solutions of Lax’s problem with & =150 at time ¢ =0.26: {a} density, (b) velocity, and (c} pressure.
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ENO interpolation in Algorithm IT and the 10th order
exponential cut-off filters. In Figs. 6a—6¢ the solutions of the
Sod’s problems with N=150 at time (=04 are plotted,
while Figs. 7a—7c display the solutions of the Lax’s problem
with N =150 at time r =0.26. In both cases, the solid lines
are the exact solutions. '

Interaction of Blast Waves. The initial data suggested in
[207 to simulate the interactions of two blast waves is

u; 0<x<01,
u(x,0)=<u,, 0I1<x<09, (5.8)
u, 09<x<],

where p,=py=pr=1 qr=qu=¢z=0, P, =10
Puy=107% Pr=10%

The solution to this problem possesses drastic fluctua-
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Unlike the finite difference methods, the spectral methods
do not require exterior mesh points to treat boundary
conditions. We apply characteristic boundary conditions on
both boundaries. As the boundaries are treated as solid
walls, we impose the condition that velocity variables
vanish on both boundaries, i.e., g, =0, g, =0.

In Figs. 8a—8c and Figs. 9a-9¢, we plot the state variables
with N =300 at time t=0028 and r=0.038, respectively.
The former is an instant before the clash and the latter is one
after the clash. The solid lines in both Figs. 8 and 9 are
the solutions obtained with the third-order ENO finite
difference methods with 800 mesh points. In Fig. 10, the
solutions of density with & =400 are also plotted.

Interaction berween a Two-Dimensional Shock Wave and a
Rotating Vortex. The equations in consideration will be
(1.1} with

tions under the impact of interactions; it is a good test of the u=(p,m.m, E), (5.9)
stability of Algorithm I1. The complex structure of the solu-
tions after the clash of two blast waves demands a stable f(u)=g,u+(0, £, 0, 4,P), (5.10)
high-order method to capture the details of solutions. glu)=q,u+(0,0, P, q,P), (5.11}
a 15.0 — b
2 2
< <
> D-6 - >|- t.a
O‘QOD] o 2' < 4' o 5‘ D-B‘ 1 O‘ -7.0
. X—Axié o.o o2 0.4 .8 o.8 1.0
X—-Axis
A8 .0 — c
f
; 358 .4 —
1a8.7 —

X-Axis

FIG. 8. Blast wave problem with N = 300 at time s = 0.028; (a) density, (b) velocity, and (c) pressure,



7 -0 14 .0 —
a b
S.6 — 11.0 —
a.z2 - 8.0 —
2 P
% 4
b X
. T
> >
z.8 — 5.0 —
I.AW 2 [
o-oc T T —-1-0 T T T
0.0 o-=2 o.a o.o &2 a.a o.6
X-Axis
41e .0 =
C
336.6 —
257 .2 —
“
EA
T
b
177 .8 —
8.4 —
B T T T 1
a.0o 0.z [a] Q.8 [ol - 1.0

A—-Axis

FIG. 9. Blast wave problem, time ¢ = 0.038.

where ¢, ¢, are velocity components in the x- and
y-directions, respectively, and m_ = pg, and m,=pq, are
x- and y-momentums, respectively. P=(y — 1 {£—$pq?),
@ =qi+ql.

We apply the one-dimensional Algorithm 11 on the fluxes
f(u) and g(u) separately. The right and left eigenvectors for

5.6 o
= =z —

K

%

N

> .

Z.a

X 4 —

c.c T T T T —
c.o a.=z o.a o.& o.s 1.0

X—Axis

FIG. 10. Density of blast wave problem with ¥ =400 at time ¢ =0.038.

the Jacobian matrices (éf/du), (dg/du) can be found
in [15].

The physical domain is the rectangle [0,37x
[— 1.5, 1.57]. A Mach-3 planar shock wave moves from the
left to the right. A rotating vortex is initially located to the
right of the shock. As time progresses, the shock will hit the
vortex and interact with it. The shock front will be deformed
by the interaction, and pressure waves are generated from
the interactions. In the computations, we define the velocity
ficlds of the vortex as those induced by two rotating con-
centric cylinders with radius r, and r,, respectively, r, <r,.
Initially the vortex is located at (x., y.). The outside
cylinder is stationary and the inside one rotates with the
angular velocity e, Let §(r) be the radius velocity at a
distance r from the center of the vortex, we then have

wr if 0%"%"!1
171 :
b(r)= w-(—-f—ir—l) if ri<r<r,, (5.12)
rira b
0 if rzr,,

wherea=1/r}—1/rk b=ri—rir=J(x—x P +{(y—y.)>
We choose r; =0.15, r, =0.75, @ =17.5.
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FIG. 11. Interactions between a two-dimensional planner shock wave and a vortex, Mach number =3, r=04: (a) density contour with level

value = 0.1 and (b) pressure contour with level value =0.2.

Therefore the x- and y-velocities induced by this vortex at The initial conditions for the simulation are as follows:

(x, ) will be
p,=3.857143,

.= —y_ry‘ 8(r), (5.13)
q.a=2.629367 if x<x,,

X=X,
q"l’ - v(r)y (5.14) qy!= 0’ . (5-15)

where x_ =225, y, =0, P;=10.333333, ‘ (5.16)
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FIG. 12. Close-ups of Fig. 11: (a) density and (b} pressure.

and
p.=1
For =10 if x>xq,
. ‘ (5.17)
qvvr=Qy=
Pf= 1!

where x, is the initial shock position, x, = 1.5.

We impose characteristic boundary conditions on both
the left and right boundaries. A periodic boundary condi-
tion is used in the y-direction and hence we are simulating
the interaction between an array of periodically distributed
vortices and a plane shock wave. To relax the time restric-
tions of the Chebyshev approximation in the x-direction, we
apply the mesh transformation (32) with x=0999. The
shock has been made stationary by a translation in the
mean flow direction. The second-order ENQ interpolation
and the 10th order exponential filter have been used
in (4.10}. FIG. 13. Same as in Fig. 11, density solutions at =10.4.
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Figures 11a and 11b are the contour plots of the pressure
and density fields at time ¢ = 0.4, while Figs. 12a, 12b are the
close-ups of the pressure and density at time (=04
Figure 13 is the pressure profile at time ¢ =0.4.

Concluding Remarks

Centered difference methods including spectral methods
are efficient and accurate, while upwind difference methods
offer the advantages of sharp monotenic shock prefiles. We
have explored, in this work, the possibilities of blending the
advantages of the ENO finite difference methods and the
spectral methods. Numerical results have shown the robust-
ness and feasibility of this approach at a small extra cost
over the standard spectral methods. The success of the
method proposed in this paper to achieve uniform high-
order accuracy is closely related to the ability of the algo-
rithm in detecting shock, contact, and rarefaction discon-
tinuities in the solutions. Future numerical experiments will
be concentrated on more efficient techniques in detecting
those discontinuities, especially discontinuities in solution
deivatives.
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